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Abstract. Classes of gauge eguivalent configurations are characterized in terms of
local gauge invariant quantities. The construction of such quantities is performed
for scalar electrodynamics and theories of SU(2)-gauge fields in two different
representations. Topologically nontrivial configurations are discussed.

0. INTRODUCTION

It is well known that the configuration space Q of a gauge theory is built up
by the set of connections on a principal fibre bundle. In this set acts the group
& of local gauge transformations. Factorizing with respect to this action we
obatin the reduced configuration space Q/¥ consisting of classes of gauge equi-
valent connections. A lot of hard and intersting mathematical probelms arise if
one investigates the global structure of - speaking most generally - the stratifica-
tion of the orbit space Q/%, see e.g. [10], [11] and [12].
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Our aim is a more practical one. For purposes of quantum theory one has to
parametrize Q/% in an effective way - one has to «fix the gauge». Unfortunately,
usual methods of fixing the gauge (e.g. Lorentz-or Coloumb-gauge) destroy
such properties of the theory like locality or relativistic invariance. (For a more
detailed discussion of this point see {3]). In contrast to these methods we are
going to parametrize classes of gauge equivalent configurations by the help of
local gauge invariant quantities. In the case of scalar electrodynamics (chapter
1) our construction leads to the so called hydrodynamical quantities obtained
earlier in [1] and [2]. In chapter 2 we demonstrate our method for two models
with gauge group SU(2) in different representations.

We should underline that our method works only for theories of gauge fields
interacting with matter fields, but not for «pure gauge theories». Another point
is that we are only able to perform our construction for generic (the exact mean-
ing of this will be clear later on) configurations. Thus, we don’t get any results
concerning the global structure of Q/¥4.

In some respects our treatment will be very sketchy. A more detailed discussion
(including the reduction of the canonical structure of gauge theories in terms
of hydrodynamical quantities) can be found in [3]. Throughout this paper we
use the fibre bundle formulation of gauge theories as introduced in [8] and [9].

1. SCALAR ELECTRODYNAMICS

This theory describes the interaction of a U(1)-gauge field A with a complex
scalar field ¢. The Lagrangean is given by

1 1
(1.1a) L=—9¥(¢® +—D,pD¥¢ — —F, FH,
2 4
(1.1b) F, =0,4,-8,4,
(1.1 b) Do =(,+igd,)

In the language of fibre bundles a configuration of this theory is a pair (7, f),
where 7 is a connection form in a (trivial) U(1)-principal bundle P over Minkow-
ski space M and fis a section of the associated bundle £ = PxU(l)Cl, (u)
acts on C! by left multiplication).

In a chosen trivialization

(m,x) :P—— M x U(1),

m-canonical projection in P, of P the pair (7, f) is represented by a pair (4, ) of
quantities introduced above.
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We shall characterize classes [(7,f)] of gauge equivalent configurations by
gauge invariant quantities. For this purpose let us consider a configuration (7, )
and remove the submanifold o :={x €M :f(x) =0} from M. In the generic
case 0 is a 2-dimensional submanifold. We denote M,:=M —o0 and observe
that nl(MO) >~ Z. Next we restrict P and £ to subbundles Po and Eo over MO,
and take the restrictions (denoted by the same letters) of 7 resp. f to P, resp.
E . Obviously

(1.2) My x ——R(x):=|f(x)|€R]}
is a gauge invariant quantity and

(1.3) s(x) 1 =10) (| P7!

defines a section of the subbundle Eoz POXU(I)SI of E,. It is trivial that Eo
can be canonically identified with P, and, therefore, s defines a section (denoted
by the same letter) of P,. We use s to define a gauge invariant covector field v
onM 0
! 1
v"(p)(X) T= g wp (vers X)

(1.4 )

= T Tp(S*X), where X € T"(p)MO,

. ~ ;IR1
ll/p.u(l):l]R —>I/;,

is the canonical isomorphism of the Lie algebra of U(1) and the vertical subspace
V;, at p € B, defined by the right action ¢ of U(1) on £, and ver s, X is the verti-
cal (with respect to 7) component of s, X. Thus,

1
(1.5) V= —s*r,
i
It is obvious that v is gauge invariant. The geometrical sense of this quantity is
iltustrated in Fig. 1:
Given a pair (v, R), we can reconstruct (7, f) up to gauge transformations.
Thus, we have a 1-1-correspondence

(1.6) [(r, )} <—— (v, R).
In a chosen trivialization (m, x ) of P0 we have

1
T=7*{IA) + —x*(0),
e
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u(1)

- horizontal sub-
space defined
by T

Fig. 1.

where 6 is the canonical left invariant (Lie algebra-valued) 1-form on U(1).
Denoting s (x) = exp (fa(x)), we get

1 1
(1.7) v=—s*r=A4 + —da.
i e

(Of course, exp (fa(x)) is the phase of the matter field in the trivialization x).

The quantities (v, R) were earlier introduced by Biaiynicki-Birula ([1]) and
Mandelstam ([2]). It appears that the field equations written down in terms of
R and v are equivalent to the equations of relativistic hydrodynamics of a charged
fluid, where R? is interpreted as the density and v as the velocity field of the
fluid.

At the end let us notice that v has to fulfill certain topological constraints -
due to the existence of topological nontrivial configurations (vortices) appearing
in this model:

(1.8) curlv=F + 2mne 182, wheren € Z

is the vortex strength and 6 is a &-distribution concentrated on the vortex-
-submanifold o. To show (1.8) we take a cllosed curve vy in M0 and consider
the phase-change of ¢ along . We obtain a closed curve in U(1), which defines
an element n of m (U(1)) = Z. Obviously, the total phase-increase of ¢ along
« si 2mwn. Using this fact and (1.7), we get (1.8).
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2. HYDRODYNAMICAL DESCRIPTION OF MODELS WITH GAUGE GROUP
SU(2)
2.1. SU(2) in the fundamental representation

In this case we obtain a model describing the (minimal-coupling) interaction of
a SU(2)-gauge field 4 with a Cr-valued matter field . Thus, in our geometrical
approach a configuration of this model is a pair (7, f), where 7 is a connection
form in a (trivial) SU(2)-principal bundle P and f is a section of the associated
bundle £ =P XSU(Z)C 2 Now, 0 : ={x €M :f(x) = Olis in the generic case a point,
We take again M, = M—o, m4(M,) = Z, the corresponding restrictions ot P and
E to (trivial) bundles P, and E, over M, and also the restrictions of 7 resp. f to
Pyresp. E,. Of course,

My>x — R(x) =|f(x)|€R!
is a gauge invariant quantity and
s(x):=1C) (JfG )1 is a section

1 3
of the subb~undle E,=F XSU(Z)S of E,.
Again, E0 can be canonically identified with P0 and, therefore, s defines a
section of PO. Our (gauge-invariant) «hydrodynamical velocity »

vi=s%*T

is now a covector field on Mo with values in the Lie algebra su(2) and has essen-
tially the same geometrical interpretation as in chapter 1. Similar topological con-
straints for v follow from the existence of nontrivial group homomorphisms

T,(M)=Z —1,(5%) = Z.

2.2. SU(2) in the adjoint representation

Now we consider the theory of a SU(2)-gauge field A interacting with a
3-component matter field y, defined by the Lagrangean:

1 1
@4a)  L=—¥(eP)+ Dl -,

1
where | - || is calculated by the help of the scalar product A(-,-) = — 5 K(-,-),

(K - Cartan-Killing-form), on su(2) and by the space time metric g, It is easy to

i
see that e,=— 5 a, (oa) - Pauli-matrices, is an orthonormal basis for # and that
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— b
b) D“ap“—a#¢”+gegCA#¢‘,
(2.4) a a a a 4b 4c
c) ijz a#AV—aVA“+gebcApAv.
Moreover, under the identification

su(2) = R3,

the adjoint representation Ad of SU(2) is isomorphic to the fundamental repre-
sentation O of SO(3) on IR3:

(2.5) Ad p(x°e) = (Ox)%,, x€R’.

We take again a configuration (7, /), where 7 is a connection form in the (trivial)
SU(2)-principal bundle P over M and f is a section of the associated vector bundle
E=P xSU(z)Su(2). The submanifold ¢ defines in the generic case a line, thus for
My=M—o0 we have 7r2(M0) = Z. After the same procedure as previously we end
up with a pair (7, /) in bundles P0 and E0 over MO. Again

(2.6) M3 x — R(x) :=|f(x)|R!
is gauge invariant and now
2.7 s(x) 1 =) (| Fx)|)!

defines a section of the sgbbundle EO:PO xSU(:,_)S2 of EO. But, of course, Po
cannot be identified with E0 and, therefore, s does not define a section of P,,
but a subbundle 7.

Fixing e3ES2 and taking its stabilizer Stab (e;) = SO(2), we obtain - using
(2.5) - an embedding

(2.8) U(l) T, SU(2).

Factorizing with respect to the - induced by (2.8) - U(1)-action we get a principal
U(1)-bundle

X :PO—PO/U(I).

It is easy to see that PO/U(I) = EO. Now, the section (2.7) defines an (in general
nontrivial) U(1)-subbundie 130 C P, in the following way {40n:

(2.9) Py:={p €Py:x(p)=sx(P)).

Taking the (orthogonal with respect to 4) decomposition
(2.10) su(2) = u(l) @u(l),

induced by (2.8), we have
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PROPOSITION: a) The restriction
=L u(l)
(2.11 a) T.=1" lPo

of the u(1)-component of 7 to 130 is a connection form on ﬁo.
b) The restriction

= 1
(2.11 b) § o= quty,

of the u(1)‘-component of 7 to 130 is a horizontal (with respect to 7) 1-form on
130 with values in u(1)* = Cl of type Ad loay:

Proof. a) see [4], p. I, prop. 6.4.
b) by a simple calculation

Thus, in a first step we have characterized (7, f) by a triple (7, 5, R), where
7is a U(1)-gauge field and 9 a C€!-valued covector (matter) field.

As we already mentioned, 130 will be in general a nontrivial bundle. This is due
to the existence of topologically nontrivial configurations (monopoles), giving
rise to nontrivial group homomorphisms 7,(M,)=Z — 7r2(52) ~Z. An
example (monopole of strength » on the time axis) is given by

?1
M3x—ox)=] v, (x), where
#3
(X)) + ipy(x) = (a;x; + iazxz)" and  py(x) =a;x,.
For a detailed discussion of magnetic monopoles see [5], [6] and [7].

Now we choose a local trivialization of PO, such that the section (2.7) is repre-
sented by

Moax ——>s(x)ze3€S2

and denote the representative of 7 in this trivialization by A4. It is easy to show
that B=A3 resp. V=A4! + iA? are then representatives of 7 resp. 9. Using this,
we may write down the Lagrangean (2.4a) after this first step of reduction:

(2.12) L=R,R*+g?R?V,V*—¥(R?)

1 _
B : (H/l“’w K + GMUG“U)’

w =D V —al vV +igB[ V

7 povl T Ve ) uop

G, =08,8,—gIm{V,V} and R,=3,R.

My
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In a last step we have to parametrize the class [(7, 19)]U(1) For this purpose we
decompose & = 19 +1i 19 and observe that the covectors 19 and 19 span a 2-
-dimensional plane ?m every horizontal (with respect to T) subspace of T P
Gauge transformations rotate 0 and 19 in 2. More exactly.

The endpoints of 19 and 02 draw in 9’

1) an ellipse - if 9’ is (with respect to the in 71?5130 from M induced scalar
product) space-like,

2) a hyperbole - if 2 is time-like,

3) astraight line - if 2 is light-like.

Now, there exists a gauge, which from the geometrical point of view seems to
be most natural: the gauge, in which the two covectors are orthogonal (with
respect to the induced scalar product). Performing this gauge transformation,
we get

~1
— 7,

-»

a)
by §— 38, (3,9, =0
(For case 3) this construction doesn’t make sense!).

Thus, the class [(7, 3)](](1) will be parametrized by 7' and seven independent
fields describing the geometry of the ellipse (or hyperbole).

One can show that transformation (2.13) is not well defined if simultaneously
(31, 5‘2) =0 and |9, | =| 3, |- In the generic case these two equations define a
2-dimensional submanifold of Mo, which one has to remove from Mo in order to
perform the above construction.

In our opinion it would be interesting to perform similar constructions for
theories containing spinor fields. For the case of spinor electrodynamics this
has been already done, see [13], [14] and [15].
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