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On the hydrodynamical description
of gauge theories
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Abstract. Classesof gaugeeguivalentconfigurationsare characterizedin termsof
local gaugeinvariant quantities. Theconstructionof suchquantitiesis performed
for scalar electrodynamicsand theoriesof SU(2)-gauge fields in two different
representations.Topologically nontrivialconfigurationsarediscussed.

0. INTRODUCTION

It is well known that the configurationspaceQ of agaugetheory is built up

by the set of connectionson a principal fibre bundle.In this set acts thegroup

~ of local gauge transformations.Factorizing with respect to this action we

obatin the reduced configuration spaceQ/l~consistingof classesof gaugeequi-

valent connections.A lot of hard andintersting mathematicalprobeimsariseif

one investigatestheglobal structureof - speakingmost generally- the stratifica-

tion of theorbit spaceQ/~,seee.g.[10], [11] and [12].
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Our aim is a more practicalone. For purposesof quantumtheory onehasto

parametrizeQ/~in an effective way - one hasto <<fix thegauge>>.Unfortunately,
usual methods of fixing the gauge (e.g. Lorentz-or Coloumb-gauge)destroy

such propertiesof the theory like locality or relativistic invariance.(For a more

detailed discussionof this point see [3]). In contrast to thesemethodswe are

going to parametrizeclassesof gauge equivalent configurationsby the help of

local gauge invariant quantities. In the case of scalarelectrodynamics(chapter

1) our construction leads to the so called hydrodynamical quantitiesobtained

earlier in [11 and [2]. In chapter2 we demonstrateourmethod for two models

with gaugegroupSU(2) in differentrepresentations.

We should underline that our method works only for theoriesof gaugefields

interacting with matter fields, but not for <<pure gaugetheories>>.Another point

is that we areonly ableto performour constructionfor generic(the exact mean-

ing of this will be clear later on) configurations.Thus, we don’t get any results

concerningtheglobal structureof Q/~’.
hi somerespectsour treatmentwill bevery sketchy.A moredetailed discussion

(including the reduction of the canonicalstructureof gauge theories in terms
of hydrodynamicalquantities) can be found in [3]. Throughout this paperwe

use the fibre bundle formulation of gaugetheoriesas introducedin [8] and [9].

I. SCALAR ELECTRODYNAMICS

This theory describesthe interactionof a U(l)-gauge field A with a complex

scalarfield p. The Lagrangeanis givenby

1 1
(l.la) ~ ___F~~,F~,

(1.1 b) FM=aMA~_~VAM,

(1.1 b) D~c= (ö~+igA)

In the languageof fibre bundlesa configuration of this theory is a pair (r,f),

where r is a connectionform in a (trivial) U(l)-principalbundleP overMinkow-
ski spaceM andfis a section of the associatedbundle E = P XU(l)C’, (U(l)

actson C1 by left multiplication).

In a chosentrivialization

(ir,x) :P——~Mx U(l),

ir-canonical projection in P, of P the pair (r, f) is representedby apair(A, ~) of
quantitiesintroducedabove.



ON THE HYDRODYNAMICAL DESCRIPTION OF GAUGE THEORIES 27

We shall characterize classes[(r,f)] of gaugeequivalent configurationsby
gaugeinvariant quantities.For this purposelet us considera configuration(r, f)
and remove the submanifold a : = {x EM :f(x) = 0} from M. In the generic
case a is a 2-dimensional submanifold. We denoteM0 = M — a and observe

that ir1(M0) Z. Next we restrictP and E to subbundlesP0 and over M0,

and take the restrictions(denotedby the sameletters)of r resp.f to P0 resp.
E0. Obviously

(1.2) M0~x—+R(x):=Of(x)IIE1R~

is a gaugeinvariantquantityand

(1.3) s(x) :=f(x)(IIf(x)IIy’

defines a section of the subbundle = P~XU(l)S’ of E0. It is trivial that
can be canonicallyidentified with P0 and,therefore,s definesasection(denoted

by the same letter) of P0. We use s to define a gaugeinvariant covector field v

on M0:

v(~)(X) = — J.i~’(vers~X)

(1.4) 1

= — r~(s~X),whereXE T,~(~)M0~

~~:u(1)~i1R
1 —÷

is the canonicalisomorphismof the Lie algebraof U(l) and theverticalsubspace
at p E1~,definedby the right action i,Li of U(1) onP~,andvers~Xis theverti-

cal (with respectto r) componentofs
5X.Thus,

(1.5) v=~s*r.

It is obvious that v is gaugeinvariant. Thegeometricalsenseof this quantity is
illustratedin Fig. 1:

Given a pair (v, R), we can reconstruct(r,f) up to gauge transformations.
Thus,we havea 1 -1 -correspondence

(1.6) [(r,f)] (v,R).

In a chosentrivialization (7r,x) ofF0 we have

r = ~*(iA) + _x*(O),
e
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Fig. 1.

where 0 is the canonical left invariant (Lie algebra-valued)1-form on U(1).
Denotings(x)= exp (ict(x)), weget

1 1
(1.7) v=_s*r=A+_da.

j e

(Of course,exp(ia(x)) is the phaseof the matter field in the trivialization x).
The quantities (v, R) were earlier introducedby Biaiynicki-Birula ([1]) and

Mandeistam([2]). It appearsthat the field equationswritten down in terms of
R and v areequivalentto theequationsof relativistichydrodynamicsof acharged

fluid, where R 2 is interpretedas the density and 1) as the velocity field of the
fluid.

At the end let us notice that v has to fulfill certaintopological constraints-

dueto the existenceof topologicalnontrivial configurations(vortices) appearing

in thismodel:

(1.8) curly = F + 27rne
1~(2) wheren E Z

is the vortex strength and ~(2) is a 5-distribution concentratedon the vortex-
-submanifold a. To show (1.8) we take a closed curve ‘y in M

0 and consider
the phase-changeof p along ‘y. We obtain a closedcurve in U(1), which defines
an element n of ir1(U(1)) ~. Obviously, the total phase-increaseof p along
-ysi 2irn. Usingthis factand(1.7), weget(1.8).
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2. HYDRODYNAMICAL DESCRIPTION OF MODELS WITH GAUGE GROUP
SU(2)

2.1. SU(2) in the fundamental representation

In this casewe obtain a model describingthe(minimal-coupling) interactionof
a SU(2)-gaugefield A with a Cf-valuedmatter field ~. Thus, in our geometrical

approacha configurationof this model is a pair (r,f), where r is a connection
form in a (trivial) SU(2)-principalbundle P and f is a sectionof the associated

bundleE = P XSU(
2)C

2 Now, a : = {x EM : f(x) = 0} is in thegenericcaseapoint,
We take againM

0 = M — a, ir3(M0) ~, the correspondingrestrictionsof P and
E to (trivial) bundlesP0 andE0 overM0, and also the restrictionsof r resp.f to
P0resp.E0. Of course,

M0~x—~R(x)=IIf(x)IIER~

is a gaugeinvariantquantityand

s(x) : = f(x) ( IIf(x) ~Y’ is a section

of thesubbundle.i~= J~~ of E0.

Again, E0 can be canonically identified with Po and, therefore,s definesa
sectionofF0. Our (gauge-invariant)<<hydrodynamicalvelocity>>

V : =s~’r

is now a covector field on M0 with valuesin the Lie algebrasu(2) andhasessen-
tially the samegeometricalinterpretationasin chapter1. Similar topologicalcon-

straintsfor v follow from the existenceof nontrivialgrouphomomorphisms

ir3(M0) 7L —÷ ir3(S
3)

2.2. SU(2) in theadjoint representation

Now we considerthe theory of a SU(2)-gaugefield A interacting with a

3-componentmatterfield p, definedby the Lagrangean:

1 1
(2.4 a) L = — ~( II~II2)+ —DD ~II2~.......11F112

2 4

where is calculatedby the help of the scalarproducth(~, . ) = — ±. K(.,.),

(K - Cartan-Killing-form),on su(2) andby the spacetimemetricg~.It is easyto

seethat = — o~,(a) - Pauli-matrices,is an orthonormalbasisfor h andthat
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b) D~°= a~a + geg~A~p’~,
(2.4)

c) F~,=~

Moreover,undertheidentification

su(2)~R3,

the adjoint representationAd of SU(2) is isomorphic to the fundamentalrepre-

sentation0 of S0(3) on lR3:

(2.5) Adp(x’~e~)=(0xy~e~,xER3.

We take again a configuration(r, f), where T is a connectionform in the (trivial)
SU(2)-principalbundleP overM andf is a sectionof the associatedvectorbundle
E = P xsU(

2)su(
2).The submanifolda definesin the genericcasea line, thusfor

= Al — a we have ir
2(M0) = ~. After the sameprocedureaspreviouslywe end

up with a pair (r, f) in bundlesP0 and overM0. Again
(2.6) M0~x—~R(x): =

is gaugeinvariantandnow

(2.7) s(x) : =f(x) (IIf(x)

defines a section of the subbundleE~= ~ XsU(2)S
2of E

0. But, of course,P0

cannotbe identified with E0 and, therefore,s does not define a sectionof F0,

but a subbundle

Fixing e3 ES
2 and taking its stabilizer Stab(e

3) 50(2), we obtain - using
(2.5) - an embedding

(2.8) U(l)C÷SU(2).

Factorizingwith respectto the - inducedby (2.8)- U(l)-actionwe get a principal

U(l)-bundle

x :P0—p0/U(l).

It is easyto seethat P0/U(l) = E0. Now, the section(2.7) definesan (in general

nontrivial) U( 1) -subbundleP1~C P0 in the following way ([4]):

(2.9) P0:={pEP0:x(p)=s(lr(p))}.

Taking the(orthogonalwith respectto h) decomposition

(2.10) su(2)=u(l)eu(1)’,

inducedby (2.8),we have
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PROPOS1TION:a) Therestriction

(2.lla) =TI4U~hIp

ofthe u( 1)-componentofr to P0is a connectionformon P0.

b) The restriction

(2.11 b) : =

of the u(1)
1-component of r to P

0 is a horizontal (with respect to ~) 1-form on

P0with values in u(l)
1 C1oftypeAdIU(l).

Proof a) see [4], p. I, prop.6.4.
b) by a simplecalculation

Thus, in a first step we have characterized (r, f) by a triple (~,v.9, R), where

? is a U(l)-gaugefield and ~ a C1-valuedcovector(matter)field.
As we alreadymentioned,P

0 will be in generala nontrivialbundle.This is due

to the existenceof topologically nontrivial configurations(monopoles),giving
rise to nontrivial group homomorphisms ir2(M0) Z —~ ~ 7L. An
example(monopoleof strengthn on the time axis)isgiven by

M ~ x —p p(x) = ~2 (x), where

~p3

+ ia2x2~~and p3(x)=a3x3.

For a detaileddiscussionof magneticmonopolessee[5], [6] and [7].

Now we choosea local trivialization of F0, suchthat thesection(2.7) is repre-
sentedby

Al0 ~ x —--—~s(x) e3E

and denote the representativeof r in this trivialization by A. It is easyto show
that B mA

3 resp. VmA1+ iA2 are then representativesof ~ resp. ~. Using this,

we may write down the Lagrangean(2.4a) after this first step of reduction:

(2.12) L ~

———(W ,lV~+G G’~’),
4 p~

W=D
1~V1= a1,4J’~1+igB11~V~1,

~ and R~=a~R.
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In a last stepwe have to parametrizethe class[(i, ~)]U(1)~ For this purposewe
decompose~ = + ~2 and observe that the covectors and ~2 span a 2-
-dimensionalplane~ in every horizontal (with respect to f) subspaceof 7~PØ.
Gaugetransformationsrotate and~2 in ~. Moreexactly.

Theendpointsof and~2 drawin ~

1) an ellipse - if ~ is (with respect to the in T~P
0from M0 inducedscalar

product) space-like,
2) a hyperbole- if~istime-like,

3) a straight line - if~?islight-like.
Now, thereexistsa gauge,which from the geometricalpoint of view seemsto

be most natural: the gauge, in which the two covectorsare orthogonal (with

respect to the induced scalar product). Performing this gaugetransformation,

weget

a) ~—+~‘,

b) ~ —÷ t~’, (~,L~j) = 0.

(Forcase3) thisconstructiondoesn’tmakesense!).

Thus, the class [(i, ~~~U(1)will be parametrizedby i’ andsevenindependent
fields describingthe geometryof theellipse (or hyperbole).

One can show that transformation(2.13) is not well definedif simultaneously

~ ~ = 0 and II = II II. In the generic casethese two equationsdefine a
2-dimensionalsubmanifoldof M0, which onehasto removefrom M0 in orderto
performthe aboveconstruction.

In our opinion it would be interestingto perform similar constructionsfor

theories containing spinor fields. For the case of spinor electrodynamicsthis
hasbeenalreadydone,see[13], [14] and [15].
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